Artificial Intelligence: Reinforcement Learning in Python

Complete guide to artificial intelligence and machine learning, prep for deep reinforcement learning.
click on the image to get your coupon
icon
icon

What Will I Learn?
Apply gradient-based supervised machine learning methods to reinforcement learning
Understand reinforcement learning on a technical level
Understand the relationship between reinforcement learning and psychology
Implement 17 different reinforcement learning algorithms

Requirements:
Calculus
Probability
Markov Models
The Numpy Stack
Have experience with at least a few supervised machine learning methods
Gradient descent
Good object-oriented programming skills

Description:
When people talk about artificial intelligence, they usually don’t mean supervised and unsupervised machine learning.

These tasks are pretty trivial compared to what we think of AIs doing – playing chess and Go, driving cars, and beating video games at a superhuman level.

Reinforcement learning has recently become popular for doing all of that and more.

Much like deep learning, a lot of the theory was discovered in the 70s and 80s but it hasn’t been until recently that we’ve been able to observe first hand the amazing results that are possible.

In 2016 we saw Google’s AlphaGo beat the world Champion in Go.

We saw AIs playing video games like Doom and Super Mario.

Self-driving cars have started driving on real roads with other drivers and even carrying passengers (Uber), all without human assistance.

If that sounds amazing, brace yourself for the future because the law of accelerating returns dictates that this progress is only going to continue to increase exponentially.

Learning about supervised and unsupervised machine learning is no small feat. To date I have over SIXTEEN (16!) courses just on those topics alone.

And yet reinforcement learning opens up a whole new world. As you’ll learn in this course, the reinforcement learning paradigm is more different from supervised and unsupervised learning than they are from each other.

It’s led to new and amazing insights both in behavioral psychology and neuroscience. As you’ll learn in this course, there are many analogous processes when it comes to teaching an agent and teaching an animal or even a human. It’s the closest thing we have so far to a true general artificial intelligence.

What’s covered in this course?

The multi-armed bandit problem and the explore-exploit dilemma
Ways to calculate means and moving averages and their relationship to stochastic gradient descent
Markov Decision Processes (MDPs)
Dynamic Programming
Monte Carlo
Temporal Difference (TD) Learning
Approximation Methods (i.e. how to plug in a deep neural network or other differentiable model into your RL algorithm)
If you’re ready to take on a brand new challenge, and learn about AI techniques that you’ve never seen before in traditional supervised machine learning, unsupervised machine learning, or even deep learning, then this course is for you.

See you in class!

NOTES:

All the code for this course can be downloaded from my github:

/lazyprogrammer/machine_learning_examples

In the directory: rl

Make sure you always “git pull” so you have the latest version!

HARD PREREQUISITES / KNOWLEDGE YOU ARE ASSUMED TO HAVE:

Calculus
Probability
Object-oriented programming
Python coding: if/else, loops, lists, dicts, sets
Numpy coding: matrix and vector operations
Linear regression
Gradient descent

TIPS (for getting through the course):

Watch it at 2x.
Take handwritten notes. This will drastically increase your ability to retain the information.
Write down the equations. If you don’t, I guarantee it will just look like gibberish.
Ask lots of questions on the discussion board. The more the better!
Realize that most exercises will take you days or weeks to complete.
Write code yourself, don’t just sit there and look at my code.

WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:

Check out the lecture “What order should I take your courses in?” (available in the Appendix of any of my courses, including the free Numpy course)

Who is the target audience?
Anyone who wants to learn about artificial intelligence, data science, machine learning, and deep learning
Both students and professionals

Follow